Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prog Neurobiol ; 237: 102616, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723884

RESUMO

Alterations in cognitive and non-cognitive cerebral functions characterize Alzheimer's disease (AD). Cortical and hippocampal impairments related to extracellular accumulation of Aß in AD animal models have been extensively investigated. However, recent reports have also implicated intracellular Aß in limbic regions, such as the nucleus accumbens (nAc). Accumbal neurons express high levels of inhibitory glycine receptors (GlyRs) that are allosterically modulated by ethanol and have a role in controlling its intake. In the present study, we investigated how GlyRs in the 2xTg mice (AD model) affect nAc functions and ethanol intake behavior. Using transgenic and control aged-matched litter mates, we found that the GlyRα2 subunit was significantly decreased in AD mice (6-month-old). We also examined intracellular calcium dynamics using the fluorescent calcium protein reporter GCaMP in slice photometry. We also found that the calcium signal mediated by GlyRs, but not GABAAR, was also reduced in AD neurons. Additionally, ethanol potentiation was significantly decreased in accumbal neurons in the AD mice. Finally, we performed drinking in the dark (DID) experiments and found that 2xTg mice consumed less ethanol on the last day of DID, in agreement with a lower blood ethanol concentration. 2xTg mice also showed lower sucrose consumption, indicating that overall food reward was altered. In conclusion, the data support the role of GlyRs in nAc neuron excitability and a decreased glycinergic activity in the 2xTg mice that might lead to impairment in reward processing at an early stage of the disease.

2.
Life Sci ; 348: 122673, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38679193

RESUMO

AIMS: Glycine receptors (GlyRs) are potentiated by physiologically relevant concentrations of ethanol, and mutations in the intracellular loop of α1 and α2 subunits reduced the effect of the drug. Knock-in (KI) mice having these individual mutations revealed that α1 and α2 subunits played a role in ethanol-induced sedation and ethanol intake. In this study, we wanted to examine if the effects of stacking both mutations in a 2xKI mouse model (α1/α2) generated by a selective breeding strategy further impacted cellular and behavioral responses to ethanol. MAIN METHODS: We used electrophysiological recordings to examine ethanol's effect on GlyRs and evaluated ethanol-induced neuronal activation using c-Fos immunoreactivity and the genetically encoded calcium indicator GCaMP6s in the nucleus accumbens (nAc). We also examined ethanol-induced behavior using open field, loss of the righting response, and drinking in the dark (DID) paradigm. KEY FINDINGS: Ethanol did not potentiate GlyRs nor affect neuronal excitability in the nAc from 2xKI. Moreover, ethanol decreased the Ca2+ signal in WT mice, whereas there were no changes in the signal in 2xKI mice. Interestingly, there was an increase in c-Fos baseline in the 2xKI mice in the absence of ethanol. Behavioral assays showed that 2xKI mice recovered faster from a sedative dose of ethanol and had higher ethanol intake on the first test day of the DID test than WT mice. Interestingly, an open-field assay showed that 2xKI mice displayed less anxiety-like behavior than WT mice. SIGNIFICANCE: The results indicate that α1 and α2 subunits are biologically relevant targets for regulating sedative effects and ethanol consumption.

3.
Front Mol Neurosci ; 14: 756607, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744627

RESUMO

The glycine receptor (GlyR), a ligand-gated ion channel, is critical for inhibitory neurotransmission in brainstem, spinal cord, and in supraspinal regions. Recent data from several laboratories have shown that GlyRs are expressed in the brain reward circuitry and that α1 and α2 are the principal subunits expressed in the nucleus accumbens (nAc). In the present study, we studied the sensitivity to ethanol of homomeric and heteromeric α3 GlyR subunits in HEK293 cells and dissociated neurons from the nAc. Finally, we explored ethanol-related behaviors in a Glra3 knockout mouse (Glra3 -/-). Studies in HEK293 cells showed that while homomeric α3 GlyR subunits were insensitive to ethanol, heteromeric α3ß GlyR subunits showed higher sensitivity to ethanol. Additionally, using electrophysiological recordings in dissociated accumbal neurons, we found that the glycine current density increased in Glra3 -/- mice and the GlyRs were less affected by ethanol and picrotoxin. We also examined the effect of ethanol on sedation and drinking behavior in Glra3 -/- mice and found that the duration in the loss of righting reflex (LORR) was unchanged compared to wild-type (WT) mice. On the other hand, using the drinking in the dark (DID) paradigm, we found that Glra3 -/- mice have a larger ethanol consumption compared to WT mice, and that this was already high during the first days of exposure to ethanol. Our results support the conclusion that heteromeric α3ß, but not homomeric α3, GlyRs are potentiated by ethanol. Also, the increase in GlyR and GABA A R mediated current densities in accumbal neurons in the KO mice support the presence of compensatory changes to α3 knock out. The increase in ethanol drinking in the Glra3 -/- mice might be associated to the reduction in ß and compensatory changes in other subunits in the receptor arrangement.

4.
Br J Pharmacol ; 178(23): 4691-4707, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34378188

RESUMO

BACKGROUND AND PURPOSE: Glycine receptors composed of α1 and ß subunits are primarily found in the spinal cord and brainstem and are potentiated by ethanol (10-100 mM). However, much less is known about the presence, composition and ethanol sensitivity of these receptors in higher CNS regions. Here, we examined two regions of the brain reward system, the ventral tegmental area (VTA) and the prefrontal cortex (PFC), to determine their glycine receptor subunit composition and sensitivity to ethanol. EXPERIMENTAL APPROACH: We used Western blot, immunohistochemistry and electrophysiological techniques in three different models: wild-type C57BL/6, glycine receptor subunit α1 knock-in and glycine receptor subunit α2 knockout mice. KEY RESULTS: Similar levels of α and ß receptor subunits were detected in both brain regions, and electrophysiological recordings demonstrated the presence of glycine-activated currents in both areas. Sensitivity of glycine receptors to glycine was lower in the PFC compared with VTA. Picrotoxin only partly blocked the glycine-activated current in the PFC and VTA, indicating that both regions express heteromeric αß receptors. Glycine receptors in VTA neurons, but not in PFC neurons, were potentiated by ethanol. CONCLUSION AND IMPLICATIONS: Glycine receptors in VTA neurons from WT and α2 KO mice were potentiated by ethanol, but not in neurons from the α1 KI mice, supporting the conclusion that α1 glycine receptors are predominantly expressed in the VTA. By contrast, glycine receptors in PFC neurons were not potentiated in any of the mouse models studied, suggesting the presence of α2/α3/α4, rather than α1 glycine receptor subunits.


Assuntos
Receptores de Glicina , Área Tegmentar Ventral , Animais , Etanol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/metabolismo , Receptores de Glicina/metabolismo , Área Tegmentar Ventral/metabolismo
5.
J Chem Inf Model ; 60(12): 6634-6641, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33259207

RESUMO

Blocking the interaction between the Gßγ protein and the glycine receptor (GlyR) has emerged as a promising pharmacological strategy to treat acute alcohol intoxication by inhibiting ethanol potentiation on GlyR. M554 is a recently discovered small molecule capable of binding to Gßγ with potent in vitro and in vivo inhibitory activity. This compound has been tested as a mixture of diastereomers, and no information is available concerning the stereospecific activity of each species, which is critical to pursue efforts on lead optimization and drug development. In this work, we explored the differential activity of four M554 stereoisomers by in silico molecular dynamics simulations and electrophysiological experiments. Our results revealed that the (R,R)-M554 stereoisomer is a promising lead compound that inhibits ethanol potentiation of GlyR.


Assuntos
Etanol , Receptores de Glicina , Estereoisomerismo
6.
Br J Pharmacol ; 177(17): 3941-3956, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32436225

RESUMO

BACKGROUND AND PURPOSE: The precise mechanism/s of action of ethanol, although studied for many years, are not well understood. Like other drugs of abuse, ethanol affects dopamine levels in the nucleus accumbens (nAc), an important region of the mesolimbic system, causing a reinforcing effect. It has been shown that glycine receptors (GlyRs) present in the nAc are potentiated by clinically relevant concentrations of ethanol, where α1 and α2 are the predominant subunits expressed. EXPERIMENTAL APPROACH: Using a combination of electrophysiology and behavioural assays, we studied the involvement of GlyR α2 subunits on the effects of low and high doses of ethanol, as well as on consumption using mice lacking the GlyR α2 subunit (male Glra2-/Y and female Glra2-/- ). KEY RESULTS: GlyR α2 subunits exist in accumbal neurons, since the glycine-evoked currents and glycinergic miniature inhibitory postsynaptic currents (mIPSCs) in Glra2-/Y mice were drastically decreased. In behavioural studies, differences in ethanol consumption and sedation were observed between wild-type (WT) and Glra2 knockout (KO) mice. Using the drinking in the dark (DID) paradigm, we found that Glra2-/Y mice presented a binge-like drinking behaviour immediately when exposed to ethanol rather than the gradual consumption seen in WT animals. Interestingly, the effect of knocking out Glra2 in female (Glra2-/- ) mice was less evident, since WT female mice already showed higher DID. CONCLUSION AND IMPLICATIONS: The differences in ethanol consumption between WT and KO mice provide additional evidence supporting the conclusion that GlyRs are biologically relevant targets for the sedative and rewarding properties of ethanol.


Assuntos
Receptores de Glicina , Transmissão Sináptica , Animais , Etanol , Feminino , Glicina , Masculino , Camundongos , Camundongos Knockout , Receptores de Glicina/genética , Receptores de Glicina/metabolismo
7.
J Biol Chem ; 291(36): 18791-8, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27402845

RESUMO

The acute intoxicating effects of ethanol in the central nervous system result from the modulation of several molecular targets. It is widely accepted that ethanol enhances the activity of the glycine receptor (GlyR), thus enhancing inhibitory neurotransmission, leading to motor effects, sedation, and respiratory depression. We previously reported that small peptides interfered with the binding of Gßγ to the GlyR and consequently inhibited the ethanol-induced potentiation of the receptor. Now, using virtual screening, we identified a subset of small molecules capable of interacting with the binding site of Gßγ. One of these compounds, M554, inhibited the ethanol potentiation of the GlyR in both evoked currents and synaptic transmission in vitro When this compound was tested in vivo in mice treated with ethanol (1-3.5 g/kg), it was found to induce a faster recovery of motor incoordination in rotarod experiments and a shorter sedative effect in loss of righting reflex assays. This study describes a novel molecule that might be relevant for the design of useful therapeutic compounds in the treatment of acute alcohol intoxication.


Assuntos
Intoxicação Alcoólica/tratamento farmacológico , Etanol/efeitos adversos , Subunidades beta da Proteína de Ligação ao GTP/antagonistas & inibidores , Subunidades gama da Proteína de Ligação ao GTP/antagonistas & inibidores , Peptídeos , Receptores de Glicina/antagonistas & inibidores , Transmissão Sináptica/efeitos dos fármacos , Intoxicação Alcoólica/metabolismo , Animais , Etanol/farmacologia , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Camundongos , Peptídeos/química , Peptídeos/farmacologia , Receptores de Glicina/metabolismo
8.
J Pharmacol Exp Ther ; 353(1): 80-90, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25589412

RESUMO

Previous studies have shown that the effect of ethanol onglycine receptors (GlyRs) containing the a1 subunit is affected by interaction with heterotrimeric G proteins (Gßγ). GlyRs containing the α3 subunit are involved in inflammatory pain sensitization and rhythmic breathing and have received much recent attention. For example, it is unknown whether ethanol affects the function of this important GlyR subtype. Electrophysiologic experiments showed that GlyR α3 subunits were not potentiated by pharmacologic concentrations of ethanol or by Gßγ. Thus, we studied GlyR α1­α3 chimeras and mutants to determine the molecular properties that confer ethanol insensitivity. Mutation of corresponding glycine 254 in transmembrane domain 2 (TM2) found in a1 in the α3(A254G) ­α1 chimera induced a glycine-evoked current that displayed potentiation during application of ethanol (46 ± 5%, 100 mM) and Gßγ activation (80 ± 17%). Interestingly,insertion of the intracellular α3L splice cassette into GlyR α1 abolished the enhancement of the glycine-activated current by ethanol (5 ± 6%) and activation by Gßγ (21 6 7%). In corporation of the GlyR α1 C terminus into the ethanol-resistant α3S(A254G) mutant produced a construct that displayed potentiation of the glycine-activated current with 100 mM ethanol (40 ± 6%)together with a current enhancement after G protein activation (68 ± 25%). Taken together, these data demonstrate that GlyRα3 subunits are not modulated by ethanol. Residue A254 in TM2, the α3L splice cassette, and the C-terminal domain of α3GlyRs are determinants for low ethanol sensitivity and form the molecular basis of subtype-selective modulation of GlyRs by alcohol.


Assuntos
Etanol/farmacologia , Receptores de Glicina/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Animais , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Ratos , Receptores de Glicina/genética
9.
J Neurophysiol ; 111(10): 1940-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24572089

RESUMO

Ethanol increased the frequency of miniature glycinergic currents [miniature inhibitory postsynaptic currents (mIPSCs)] in cultured spinal neurons. This effect was dependent on intracellular calcium augmentation, since preincubation with BAPTA (an intracellular calcium chelator) or thapsigargin [a sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) pump inhibitor] significantly attenuated this effect. Similarly, U73122 (a phospholipase C inhibitor) or 2-aminoethoxydiphenyl borate [2-APB, an inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) inhibitor] reduced this effect. Block of ethanol action was also achieved after preincubation with Rp-cAMPS, inhibitor of the adenylate cyclase (AC)/PKA signaling pathway. These data suggest that there is a convergence at the level of IP3R that accounts for presynaptic ethanol effects. At the postsynaptic level, ethanol increased the decay time constant of mIPSCs in a group of neurons (30 ± 10% above control, n = 13/26 cells). On the other hand, the currents activated by exogenously applied glycine were consistently potentiated (55 ± 10% above control, n = 11/12 cells), which suggests that ethanol modulates synaptic and nonsynaptic glycine receptors (GlyRs) in a different fashion. Supporting the role of G protein modulation on ethanol responses, we found that a nonhydrolyzable GTP analog [guanosine 5'-O-(3-thiotriphosphate) (GTPγS)] increased the decay time constant in ∼50% of the neurons (28 ± 12%, n = 11/19 cells) but potentiated the glycine-activated Cl(-) current in most of the neurons examined (83 ± 29%, n = 7/9 cells). In addition, confocal microscopy showed that α1-containing GlyRs colocalized with Gß and Piccolo (a presynaptic cytomatrix protein) in ∼40% of synaptic receptor clusters, suggesting that colocalization of Gßγ and GlyRs might account for the difference in ethanol sensitivity at the postsynaptic level.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Glicina/metabolismo , Neurônios/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Inibidores de Adenilil Ciclases , Adenilil Ciclases/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Canais de Cloreto/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/metabolismo , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inibidores , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos Endogâmicos C57BL , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Neurônios/fisiologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/fisiologia , Receptores de Glicina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Medula Espinal/fisiologia , Transmissão Sináptica/fisiologia , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo
10.
J Biol Chem ; 287(48): 40713-21, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23035114

RESUMO

BACKGROUND: Gßγ interaction with GlyR is an important determinant in ethanol potentiation of this channel. RESULTS: A small peptide, RQH(C7), can inhibit ethanol potentiation of GlyR currents. CONCLUSION: Results with RQH(C7) indicate that ethanol mediated potentiation of GlyR is in part by Gßγ activation. SIGNIFICANCE: Molecular interaction between Gßγ and GlyR could be used as a target for pharmacological modification of ethanol effects. Previous studies indicate that ethanol can modulate glycine receptors (GlyR), in part, through Gßγ interaction with basic residues in the intracellular loop. In this study, we show that a seven-amino acid peptide (RQH(C7)), which has the primary structure of a motif in the large intracellular loop of GlyR (GlyR-IL), was able to inhibit the ethanol-elicited potentiation of this channel from 47 ± 2 to 16 ± 4%, without interfering with the effect of Gßγ on GIRK (G protein activated inwardly rectifying potassium channel) activation. RQH(C7) displayed a concentration-dependent effect on ethanol action in evoked and synaptic currents. A fragment of GlyR-IL without the basic amino acids did not interact with Gßγ or inhibit ethanol potentiation of GlyR. In silico analysis using docking and molecular dynamics allowed to identify a region of ~350Å(2) involving aspartic acids 186, 228, and 246 in Gßγ where we propose that RQH(C7) binds and exerts its blocking action on the effect of ethanol in GlyR.


Assuntos
Etanol/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Peptídeos/metabolismo , Receptores de Glicina/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Células HEK293 , Humanos , Cinética , Peptídeos/química , Ligação Proteica , Receptores de Glicina/química , Receptores de Glicina/genética
11.
J Pharmacol Exp Ther ; 340(2): 339-49, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22040678

RESUMO

Ethanol alters the function of several members of the Cys-loop ligand-gated ion channel superfamily. Recent studies have shown that the sensitivity of the α1 glycine receptor (GlyR) to ethanol can be affected by the state of G protein activation mediated by the interaction of Gßγ with intracellular amino acids in the GlyR. Here, we evaluated the physicochemical property of Lys385 that contributes to ethanol modulation by using mutagenesis, patch-clamp, and biochemical techniques. A conserved substitution (K385R) did not affect either the apparent glycine EC50 (40 ± 1 versus 41 ± 0.5 µM) or the ethanol-induced potentiation (53 ± 5 versus 46 ± 5%) of the human α1 GlyR. On the other hand, replacement of this residue with glutamic acid (K385E), an acidic amino acid, reduced the potentiation of the GlyR to 10 ± 1%. Furthermore, mutations with a hydrophobic leucine (K385L), a hydrogen bond donor glutamine (K385Q), or a neutral residue (K385A) also reduced ethanol modulation. Finally, substitution by a large and hydrophobic residue (K385F) and deletion of 385 (Lys385_) reduced ethanol modulation to 10 ± 4 and 17 ± 0.4%, respectively. Experiments using dynamic cysteine substitution with a methanethiosulfonate reagent and homology modeling indicate that the basic property and the position of Lys385, probably because of its interaction with Gßγ, is critical for ethanol potentiation of the receptor.


Assuntos
Etanol/farmacologia , Lisina/química , Receptores de Glicina/química , Receptores de Glicina/metabolismo , Substituição de Aminoácidos , Membrana Celular/metabolismo , Fenômenos Químicos , Cisteína/química , Cisteína/genética , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Fenômenos Eletrofisiológicos/fisiologia , Metanossulfonato de Etila/análogos & derivados , Metanossulfonato de Etila/química , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Glicina/farmacologia , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Lisina/genética , Modelos Moleculares , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp , Propofol/farmacologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Receptores de Glicina/efeitos dos fármacos , Receptores de Glicina/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Eletricidade Estática , Propriedades de Superfície , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...